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Abstract. Statistical and ergodic properties of a simple model ofN hard discs in a circular
cavity are investigated by means of analytical considerations and molecular dynamics computer
simulations. The model exhibits ergodicity breaking at different densities as well as a kinetic
crossover from hydrodynamic relaxation to particle exchange hopping processes. We calculate
the associated densities over a large range ofN . The threshold densities for the kinetic cross-
over are not correlated with the ergodicity-breaking density. ForN →∞, the kinetic crossover
corresponds to thefreezing transitionof the bulk system of hard discs. For finiteN , we found
that the crossover densities are smaller than the bulk freezing density. We finally discuss the
relevance of our results for the glass and crystallization transitions in porous media.

1. Introduction

In the usual statistical mechanical definition of phase transitions, the thermodynamic limit
is involved, where the system volume� and the numberN of particles tend to infinity
while the number densityρ = N/� is kept fixed. Emerging non-analyticities of the free
energy determine the locations of phase boundaries as a function of the corresponding
thermodynamic variables such as temperatureT , number densityρ and pressureP . The
result is independent of which ensemble is used. In recent years, it has become popular
to study the thermodynamics offinite systems [1]. It is clear that—at least in the general
traditional sense—there is no sharp phase transition in a finite system. Moreover, the
different ensembles are no longer equivalent. The interesting question, however, is that of
whether and how the bulk phase transition manifests itself in a finite system. It is clear
that such a ‘fingerprint’ of a bulk phase transition in a finite system would depend strongly
on the system size. A detailed knowledge of the thermodynamics of finite systems is of
great interest for various reasons. First, every real system is finite. Second, in a computer
simulation there is no obvious way of taking the thermodynamic limit and one has to
consider finite-size effects carefully. Third, on confining a system heavily, there emerge
quite novel effects not known from the bulk behaviour as far as both structural and dynamical
correlations are concerned [2–4]. This was strikingly demonstrated by experiments on the
dynamics of molecular liquids confined to porous media—see, e.g., [5, 6]—and on the
structure and dynamics of two-dimensional magnetic colloids confined into two-dimensional
cavities of different shapes [7].

The aim of this paper is to perform a theoretical study of phase transitions in heavily
confined systems consisting ofN particles in two-dimensional cavities. In order to address
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principles, we try to keep the model simple. Therefore we have studied a toy model ofN

two-dimensional hard discs in a hard circular cavity. This model has the advantage that
the temperature scales out and the only remaining thermodynamic parameter is the density
or the area fraction. The simplicity of the model makes it possible to study ergodicity
properties of the finite system as well as to calculate structural and dynamical correlations
within the molecular dynamics computer simulations. For increasing density, we find that
the system exhibits a crossover from a regime where the long-time dynamics is dominated
by hydrodynamic relaxation to another regime where the dynamics is governed by particle
exchange hopping processes. The corresponding threshold densities of this kinetic crossover
are calculated for differentN . For largeN , these densities fall into the coexistence region
of the bulk freezing transition of the hard-discs system from a fluid to a hexagonal two-
dimensional crystal [8]. For finiteN the transition densities are significantlysmaller than the
bulk freezing density. This demonstrates the important influence of the system boundaries
on the freezing transition. Our model also exhibits several ergodicity-breaking transitions
which can be partially assessed exactly. Interestingly enough, these transition densities do
not scale with the densities associated with the dynamical crossover, i.e., in general, they
behave differently as functions of the total particle numberN .

Our paper is organized as follows. In section 2, we introduce our model and discuss
simple geometric and ergodic properties. Static quantities are discussed in section 3. It turns
out that the static correlations are quite insensitive to the density. Hence we take dynamical
correlations as diagnostic tools for a freezing transition and calculate the corresponding
transition densities in section 4. We give our conclusions in section 5.

Figure 1. N hard discs in a spherical cavity.R denotes the radius of the cavity;σ is the
hard-disc diameter.

2. The model and its properties

2.1. The model

We study a two-dimensional system ofN hard discs of diameterσ in a circular cavity of
radiusR; see figure 1. The positions of the disc centres are denoted byri (i = 1, . . . , N).
The origin of our coordinate frame is taken to be the cavity centre. The boundary of the
cavity is modelled as a hard wall, i.e. the interaction of a disc with the cavity is given by
the external potential

V ext (r) =
{

0 r 6 R − σ/2
∞ r > R − σ/2 (2.1)
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Figure 2. The close-packed configurations forN = 2–20. These are rigorously proven only for
N 6 11.
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wherer is the distance from the disc to the origin.
Since only excluded-area interactions are involved, the temperatureT scales out as far

as static quantities are concerned. It only sets the relevant energy scalekBT . The only
remaining thermodynamic parameter is the number density per unit area,ρ = N/A =
N/πR2, or the correspondingarea fraction, defined by

η = N
(
σ

2R

)2

. (2.2)

We also study dynamical quantities, assuming the usual molecular dynamics (MD) involving
elastic collisions between different discs and between the discs and the system boundary.
The trajectories of the discs are denoted byri (t) with t being the time. All of the discs
have the same massm and the natural timescaleτ is set by

τ =
(
mσ 2

2kBT

)1/2

. (2.3)

Since our system exhibits rotational symmetry, the total angular momentum of the discs is
conserved. In order to get rid of the trivial overall rotation of the whole system, we fix the
total angular momentum of the discs as zero in all of our considerations.

2.2. Close packing

The upper limit of the area fractionη is governed by close packing. Finding this close-
packed area fractionηCPN and the associated disc configuration for different values ofN

constitutes an old problem of classical geometry which has not yet been solved for arbitrary
N [9, 10]. For smallN up to N = 11, however, the close-packed configurations have
been determined rigorously [11]. ForN > 11, there are some plausible guesses [12]. We
have summarized all of these close-packed configurations up toN = 20 in figure 2. The
associated close-packed area fractionsηCPN are shown in figure 3.

From figures 2 and 3, one can appreciate various facts. First, as expected, there is
no general simple rule for how to get the close-packed configurations for different values
of N . They depend very sensitively onN , particularly for smallN . Second, in some
close-packed configurations (e.g. forN = 3, 4, 5, 7) all discs are locked, i.e. their dynamics
is blocked apart from a trivial overall rotation of the total system. In others, however
(e.g. forN = 8, 9, 13), some discs are still allowed to move slightly in the close-packed
configuration. A third striking fact is that there are magic numbersNm = 7 andNm = 19
associated with a close-packed configuration withcurved hexagonal symmetry[10]. This
implies a high packing efficiency, as demonstrated by a high value ofηCPN . Interestingly
enough, forNm−1 (i.e. forN = 6 andN = 18), one obtains the close-packed configuration
by simply removing one arbitrary disc from the magic configurations belonging toNm. More
generally, a curved hexagonal configuration fits exactly into a circle if its magic particle
number has the formNm = 3i2 − 3i + 1 with i = 2, 3, 4, . . .. Please note, however, that
for largeNm the hexagonal configuration is not necessarily the close-packed one.

For N → ∞, ηCPN approaches its bulk limitηCP∞ = π/
√

12 ≈ 0.9069. . . , which had
been proven already by Gauss. The associated close-packed configuration is a hexagonal
lattice. For comparison we have also shown this value in figure 3 as a dashed line. It can
be seen that forN = 20, ηCPN is still far away from the bulk limit. This is consistent with
the asymptotic behaviourηCPN = ηCP∞ +O(1/N).
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Figure 3. Different area fractions versusN for N = 2–20: the close-packed area fractionηCPN
(circles); the lowest ergodic area fractionηlN (crosses); the highest ergodic area fractionηhN
(triangles). The error forηhN is smaller than the size of the symbol. The dashed line is the bulk
limit for close packing,ηCPN ≡ ηCP∞ = π/

√
12.

2.3. Ergodicity breaking

In anergodicsystem the statistical ensemble average coincides with the time average over a
long system trajectory for any initial configurations with a non-zero weight in configuration
space. If, for a set of given initial configurations with non-zero measure in configuration
space, the system trajectory does not explore the full underlying phase space, then the
system is necessarily non-ergodic. The transition from ergodic to non-ergodic behaviour is
calledergodicity breaking. In the following we restrict the meaning of ergodicity somewhat,
appealing to an intuitive view of the behaviour of locked close-packed configurations [13].
We call our system ergodic if, for any initial configuration with non-zero weight, any disc
can reach any point of the available positional part of the phase space (involving the total
accessible areaπ(R − σ/2)2) along a continuous trajectory. Hence ergodicity breaking
implies that at least one tagged disc cannot reach all of its possible configurations within
the cavity along a continuous trajectory starting from a set of given initial configurations
with non-zero measure.

KeepingN fixed, it is clear that for small area fractions the system is ergodic while
for area fractions near close packing it becomes non-ergodic. Consequently there is at least
one (but maybe several) threshold area fraction(s) marking ergodicity breaking. We call the
smallest area fraction, associated with ergodicity breaking, thelowest ergodic area fraction
η = ηlN . In detail, η = ηlN is defined via the following property. For all area fractions
which are less than or equal toηlN the system is ergodic, but there is a small number
ε > 0 such that the system is non-ergodic for a finite range of area fractions aboveηlN ,
ηlN < η < ηlN + ε. On the other hand, thehighest ergodic area fractionη = ηhN is defined
as follows: the system is non-ergodic for any area fractionη in the rangeηhN < η 6 ηCPN
and there is a small numberε > 0 such that the system is ergodic for the finite range of area
fractions belowηhN , ηhN − ε < η < ηhN . Clearly,ηlN 6 ηhN , and both ergodic area fractions
η = ηlN andη = ηhN will depend onN , in general.
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We have applied analytical considerations [13] as well as computer simulations to
determineηlN andηhN for different values ofN . The results are summarized in figure 3. For
smallN up toN = 7, we getηlN ≡ ηhN with ηlN = N/9 for N = 3, 4, 5 andηl6 = 0.6067
and ηl7 = 0.6073. One first important conclusion is thatηlN < ηhN for N > 7, signalling
a sequence of ergodicity-breaking and ergodicity-restoring transitions for increasing area
fraction.

(a) (b)

Figure 4. (a) The ‘arching’ effect of the particles. A ring-like disc configuration close to
the wall is locked due to the convexity of the wall and due to mutual geometric confinement.
(b) DeterminingηhN for N = 3. The tagged disc is shown as a full black circle. IfR > 1.5σ , a
disc can get from the region (A) into the region (B).

We obtained the lower ergodic area fractionηlN analytically forarbitrary N . ForN > 7,
ηlN is governed by anarching effectshown in figure 4(a) (rigorous proof, however is still
lacking). If the disc configuration is a ring close to the wall, the discs are locked due to the
convexity of the wall and due to their mutual geometric confinement and cannot leave the
region close to the wall. This leads to the following analytical expression forηlN (valid for
N > 7):

ηlN = N
(

σ

2x + σ
)2

(2.4)

wherex is the smallest positive solution of

(N − 2) arcsin
1

2x
+ arcsin

1

x
− π = 0.

Since the arching effect is a boundary phenomenon, it becomes clear thatηlN = O(1/N) for
largeN . In particular,ηlN vanishes in the bulk limitN →∞. For fixedN , the ‘arching’
effect depends crucially on the area fraction or on the cavity radius. Hence it becomes
immediately clear that the system exhibits a whole scenario of transitions connected with
breaking and restoring of ergodicity. This scenario becomes more and more complex for
increasingN . Figure 4(b) shows the first four non-ergodic regimes forN = 16 for which
arching around the cavity wall happens.

The highest ergodic area fractionηhN is much harder to obtain. We estimate it using a
different criterion. We consider a tagged fixed disc touching the cavity boundary to eliminate
rotations of the whole system; see figure 5. The straight line connecting the centre of the
disc and the centre of the cavity defines two half-planes (A) and (B) corresponding to two
equal areas within the cavity. There is a certain threshold area fraction above which it
becomes impossible for any disc starting in area (A) to move to area (B). (The case with
N = 3 is sketched in figure 5.) ForN > 2, this area fraction is expected to be identical to
ηhN . Following this route, we determinedηhN by making obvious guesses for the cases with
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Figure 5. The first four non-ergodic regimes for which arching occurs around the wall for
N = 16.

N = 3–8, 14, 15, 17, 19 and 20 and long MD simulations forN = 9–13, 16, and 18. We
checked our guesses by carrying out simulations as well, which allowed us to estimate the
error of our pure simulation results. We finally note thatηhN → ηCP∞ for N →∞.

As can be seen from figure 3, the lower ergodic area fractionηlN depends smoothly
and monotonically onN , while ηhN shows a subtle and strongN -dependence. Neither of
them scales with the close-packing area fraction, i.e. they are not proportional toηCPN with
a universalN -independent prefactor. Conversely,ηhN is small whenηCPN is large, as in the
case of magic numbers. If the close-packed configuration is ‘open’ (as e.g. forN = 10, 11),
then the difference betweenηCPN andηhN is small.

3. Static properties

We now turn to statistical averages in order to work out whether there are ‘fingerprints’
of the bulk freezing transition in our finite confined system. Using molecular dynamics
simulations, we calculated the equilibrium radial one-particle density distributionρ(r) as
well as the wall pressurePw. The radial density profileρ(r) is defined in the canonical
ensemble via

ρ(r) =
〈

1

2πr

N∑
i=1

δ(r − ri)
〉

(3.1)

where〈· · ·〉 denotes a static canonical average of the finite system:

〈· · ·〉 = 1

ZN

∫
dr2

1 · · ·
∫

dr2
N · · ·

[ N∏
i<j=1

2(|ri − rj | − σ)
][ N∏

n=1

2(R − σ
2
− |rn|)

]
.

(3.2)

Here the prefactorZN ensures correct normalization (〈1〉 = 1) and2(x) is the unit step
function. Theradial probability density for finding one disc at a distancer from the origin
is given by 2πrρ(r).

One possible definition of the wall pressure in a finite system is

Pw = − ∂F

∂AP

∣∣∣∣
T ,N
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whereF = −kBT ln(ZN/32NN !) is the (canonical) Helmholtz free energy of the finite
system,3 denoting the (irrelevant) thermal de Broglie wavelength of the discs. Furthermore,
AP = π(R − σ/2)2 is the area which is accessible to the disc centres. It can easily be
shown that, similarly to in the bulk case [14], the wall pressure is related to in the contact
value of the density profile:

Pw = kBTρ
(
R − σ

2

)
. (3.3)

We performed MD simulations for various magic numbers of discs, varying the
area fraction. By a repeated changing of the disc velocities [15], we ensure that our
averages are in the canonical rather than in the microcanonical ensemble. Our equilibration
period involved typically 103–104 collisions per disc. We started from the close-packed
configurations and scaled the disc diameters in order to preserve the imposed area fraction.
If the system is non-ergodic, certain regions of the configurational space are not explored by
the disc trajectories. Therefore our average does not include the whole configuration space
in this case. The full configurational average will exhibit ‘spikes’ inρ(r) at certain area
fractions, signalling the threshold of ergodicity breaking and restoring. Although this effect
is interesting, we shall not focus on it, due to the difficulty of accessing it numerically.
The amplitude of the spikes is very small and it is difficult to do a proper sampling in a
computer simulation.

Figure 6. Density profilesρ(r)σ 2 for Nm = 37 discs for the area fractionsη = 0.437 (dashed
line) andη = 0.7137 (solid line). The reduced maximal distances from the origin,R/σ − 1/2,
are 3.1 and 4.1 respectively.

Our results forρ(r) are shown in figure 6. Here, we have chosen a magic number
Nm = 37 and two different area fractions, namelyη = 0.437 andη = 0.7137. The former
area fraction is moderate but already higher thanηl37 ≡ 0.226 04, while the latter is higher
but still smaller thanηh37. As expected, the density profile is strongly inhomogeneous and
exhibits different peaks corresponding to the layering of discs in concentric circular shells
induced by the cavity wall. The peak heights increase practically continuously withη. One
could try to define solid-like and fluid-like density profiles by exploiting the bulk Lindemann
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criterion [16]: If the relative width of the peaks is 10% of their mutual distance, then the
profile is solid-like. By this classification, the first area fraction would correspond to a
‘fluid-like’ situation and the higher one to a ‘solid-like’ situation. However, as can be seen
from figure 6, the widths of the peaks depend on their distancesr and different circular
shells may coalesce into one asymmetric peak, e.g. forr = 2σ . Hence, though giving a
general feeling, the Lindemann rule is not a precise and unique way to define localization
in our finite system. Two further properties can be deduced from figure 6. First, the
central disc gives rise to a strongly localized peak which is not fully shown. Second, the
density profiles strongly pile up near the cavity wall. We finally remark that for the three-
dimensional counterpart of our model (hard spheres in spherical cavities), similar but only
fluid-like density profiles have been discussed by other authors [17–19].

Figure 7. The equation of state,Pw versus the physical area fractionηP = σ 2/(4(R − σ/2)2),
for systems containingNm = 7 andNm = 1027 discs. The area fractions associated with the
bulk freezing transition are also shown. The exact result forN = 1 is the solid line. The
scattering of the lines gives a rough estimate of the statistical error of the simulation results.

Results for the equation of state (wall pressurePw versus area fraction) are presented in
figure 7 for two different magic numbersNm = 7 andNm = 1027. In our MD simulation,
we calculatedPw from the time-averaged momentum exchange of the discs with the wall
during a collision. Sinceρ(r) strongly piles up near the wall, this procedure is much more
accurate than using an expression for which one has to extrapolate the density profile. In the
bulk limit (N →∞), the equation of statePw(η) exhibits a horizontal plateau in between
the two area fractionsηf = 0.69 andηs = 0.711 indicating the first-order freezing transition
from the fluid state to the hexagonal crystal [8]. These bulk coexisting area fractions are also
shown in figure 6. Comparing the different curves, one can see that the actual results for
the wall pressure in reduced units ofkBT /σ 2 depend onN . For comparison, we have also
included the exact result forN = 1, Pwσ 2/kBT = 4ηP /π (whereηP = (Nπσ 2)/4AP ), in
figure 7. However, even forN = 1027 there is no horizontal plateau visible in between the
bulk coexisting area fractions. This implies that we are still far away from the bulk limit.
There is no clear ‘fingerprint’ of the bulk freezing transition in the equation of state of the
finite system.
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(a)

(b)

Figure 8. The probability distributionP(r, t) versus the reduced distancer/σ for N = 19 and
for four different timest : t/τ = 15 (dotted line),t/τ = 30 (solid line),t/τ = 60 (dashed line),
t/τ = 120 (chain line), (a) below freezing,η = 0.464, (b) at freezing,η = 0.52, (c) above
freezing,η = 0.661. (d) The probability distributionP(r, t) versus the reduced distance for
t/τ = 30 for three different densities:η = 0.50, η = 0.52 andη = 0.54. The abrupt change of
the dynamical behaviour defines the density gap associated with the transition.

Summarizing, there is no obvious manifestation of the bulk freezing transition in the
static quantities considered. One perhaps has to consider more sophisticated structural
correlations as bond-orientational order parameters. We shall not follow this path, although
it may be promising, but we show below that dynamical correlations provide much more
sensitive quantities in defining the freezing transition in a finite system.
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(c)

(d)

Figure 8. (Continued)

4. Locating the freezing transition by dynamical diagnostics

Dynamical correlations are usually measured in terms of the van Hove correlation function
[20]. In particular, its self-part is the key quantity for characterizing the kinetic glass
transition [21]. We considercircular averagesof the van Hove function in our finite system
in order to reduce the number of variables. We define the circularly averaged self-part of
the van Hove function as follows:

Ḡ(r, t) = 1

N

∫
d2r ′ δ(r − r ′)

〈
N∑
i=1

δ(r′ − [ri (t)− ri (0)])
〉
. (4.1)
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Here,〈· · ·〉 is a canonical average over all initial conditions{ri (0)}. By definition, Ḡ(r, t)
only depends on two variables, the radial distancer and the timet . The radial probability
of finding a disc after a timet at a radial distancer with respect to its original position at
t = 0 is given byP(r, t) = 2πrḠ(r, t).

Let us first discuss the circularly averaged van Hove functions near the bulk freezing
transition. In the isotropic bulk fluid phase, the van Hove function coincides with its
spherical average. After a microscopic relaxation time,Ḡ(r, t) ≡ Ḡf (r, t) is roughly
described by the solution of the two-dimensional diffusion equation

Ḡ(r, t) ∼ 1

t
exp(−r2/4Dt) (4.2)

whereD is the long-time self-diffusion coefficient which depends logarithmically on time in
two dimensions [22]. In the bulk crystalline phase, on the other hand, the dynamics is very
slow, andḠ(r, t) ≡ Ḡs(r, t) shows a frozen peak at the origin for fixed timet . For very
long times, vacancy diffusion sets in and leads to the build-up of a shoulder or a secondary
peak inḠ(r, t) at r ≈ σ . In the bulk coexistence region, i.e. forηf 6 η 6 ηs , the result
for the totalḠ(r, t) is a linear superposition of̄Gf (r, t) andḠs(r, t):

Ḡ(r, t) = η − ηf
ηs − ηf Ḡf (r, t)+

ηs − η
ηs − ηf Ḡs(r, t). (4.3)

Consequently, in the bulk coexistence region, the dynamics changes abruptly from hydro-
dynamic relaxation to some kind of vacancy diffusion manifesting itself in a shoulder at
r ≈ σ . Therefore we are looking for such a shoulder in our finite system.

Computer simulation results forP(r, t) are presented in figures 8(a)–8(d) forN = 19
and for different area fractionsη ranging betweenη = 0.464 andη = 0.66. Clearly, the
dynamics of the system becomes different upon this relatively small change in area fraction
occurring. While, forη = 0.464, this is similar to hydrodynamic relaxation, the location of
the first peak practically stays frozen even forη = 0.5. Slightly above this density, there is
a clear build-up of a secondary peak atr ≈ σ (see figure 8(b),η = 0.52) for intermediate
times, which we attribute to some kind of particle exchange hopping or vacancy diffusion.
For confined systems with finiteN this secondary peak becomes very strong such that,
for longer times, its amplitude can become even higher than that of the first peak. Above
η = 0.6 the system behaves like a solid. The second peak grows extremely slowly with
time and it vanishes forη > ηl (figure 8(c)). As we can see in figure 8(d), the relevant
change in the dynamics takes place (forN = 19) in a quite narrow density gap between
the hydrodynamical (η 6 0.5) and solid-like (η > 0.6) limits. However, the width of the
gap depends onN ; it shrinks and shifts to higher values ofη as the system becomes larger
and it turns into the coexistence region in the bulk limit. This behaviour suggests that a
shift in the density with changingN is indeed a consequence of the strong confinement.
For this reason it is straightforward to define the freezing of a finite confined system within
this density range by choosing an appropriate time value forP(r, t) and exploiting the
exotic behaviour of the second peak in this region as follows. If, after a timet ≡ 30τ ,
the two peaks ofP(r, t) have the same amplitude, then we call the associated area fraction
the freezing area fractionηfN . Although this choice oft (=30τ) is slightly arbitrary, the
construction ensures a good location of the transition point within the density range, where
important changes in the dynamics happen. A further advantage of this definition is that it
is sensitive to a change in area fraction; see again figure 8(d). A situation directly at the
point of the freezing transition is shown in figure 8(b).

The physical interpretation of the freezing transition implies that the associated dynamics
contains a large number of particle exchange processes after a time which is roughly one
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Figure 9. Freezing area fractionsηfN (open circles) and scaled freezing area fractionsη
f

N/η
h
N

(crosses) versusN for N = 5–20. The statistical error is also shown.

order of magnitude larger than the microscopic timescaleτ .
We now discuss theN -dependence ofηfN in more detail. In figure 9, we have plotted

η
f

N for N = 5–20. A significantN -dependence can be seen. Obviously,η
f

N 6 ηhN . It is
tempting to relate our data to these ergodicity-breaking densities: one might conjecture that
the change in the dynamics is related to ergodicity breaking and hence one would expectη

f

N

to scalewith ηhN , i.e. the ratioηfN/η
h
N to be independent ofN . We have also included this

ratio in figure 9. However, it is not constant over the range ofN considered. The important
conclusion is that the dynamics of a strongly confined system is not completely governed by
ergodicity conditions. The statistical weights of all configurations also crucially determine
the importance of particle exchange processes. Finally we have investigated the behaviour
of ηfN for largeN . In figure 10 we have plotted the results versus 1/N in order to extract
directly the bulk limitN →∞. Data for the magic numbersNm = 1027, 547, 397, 217, 127
and 61 are shown. They seem to converge slightly below the bulk coexistence region for
N →∞. Another important conclusion is that freezing occurs for asmaller area fraction
than for the bulk. Hence, the confinement slows the dynamics down. Moreover, this proves
a posteriori that our dynamical definition of the freezing densities made sense and that
the particle exchange processes are indeed the dynamical ‘fingerprint’ of the bulk freezing
transition. It also demonstrates that there is no kinetic glass transition for hard discs, which
would be the natural bulk limit for frozen dynamical correlations. This is consistent with
earlier findings [24].

5. Conclusions

To summarize: we studied a toy model of hard discs in a circular cavity and found that
the bulk freezing transition manifests itself as a dynamical crossover from hydrodynamic
relaxation to particle exchange hopping. The corresponding crossover area fractions are not
directly related to ergodicity breaking for the system.
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Figure 10. Freezing area fractionsηfN (open circles) together with their statistical error versus
1/N for N = 1027, 547, 397, 217, 127 and 61. The bulk coexistence region is also shown.

We emphasize that freezing in a finite system can mimic both a bulkcrystallizationand
a bulkglasstransition [23]. In the simple two-dimensional model that we studied, a random-
close-packed configuration is unstable and immediately collapses to a hexagonal crystal [24].
This might change in three spatial dimensions, for which a bulk glass transition is possible
[25]. The glass transition is frequently understood as being accompanied by ergodicity
breaking [26]. Therefore it would be interesting to study our model in three dimensions.

Let us now relate our results to experiments. The best realizations of our model are
sterically stabilized colloids confined to a two-dimensional circular cavity [27]. In principle
it is possible to prepare such samples. The additional advantage is that one can investigate
the dynamics of the system in real space by video-microscopy. Up to now, only magnetic
colloids have been confined in two-dimensional cavities of defined shape [7]. They interact,
however, via a softer potential∝1/r3. Describing them in terms of hard discs is an extreme
approximation. Thus it would be interesting to realize the model for harsher colloidal
interactions and to check our theoretical predictions for the ergodicity properties and the
dynamics.

Another experimental realization concerns fluids in porous media. In this case, the
cavities are three dimensional. In a typical experiment one averages over different pore
sizes and shapes. Hence a quantitative comparison becomes more difficult. The qualitative
features, however, should be similar. Our result that the freezing has already occurred
at smaller densities, as compared to the case for the bulk, seems to contradict recent
experimental findings for the glass transitions in porous media [5, 6], which were found to
occur at lower temperatures than in the bulk. However, there are several caveats. First,
we are talking about densities, while in the experiments the density inside the pores is not
known and only the temperature can be controlled. Second, in our theory, we have excluded
the trivial whole-system rotational modes, which can contribute significantly to speeding up
the total molecular dynamics. Third, the particles considered in the experiment are complex
organic molecules which may behave differently to hard discs. Last, the roughness, shape
and connectivity of the cavity wall are more complicated in porous media than in our
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model. We conclude that in our system the confinement slows the dynamics down rather
than accelerating it.

We finish with three remarks. First, we hope that our results for the static properties
which are the key quantities in classical density functional theories [16] will stimulate more
research in this direction. In particular, it would be interesting to apply Rosenfeld’s density
functional [28], which incorporates packing effects exactly, to situations of solid-like density
profiles, as was done for three dimensions for the liquid-like region [18]. Second, although,
our mathematical assumptions concerning ergodicity are quite plausible conjectures, they are
not at the level of a rigorous proof. We hope that the demands of the physical applications
of these unsolved problems will motivate mathematical research in this field of classical
geometry. Third, we would like to draw attention to the difference between our boundary
conditions and the periodic boundary conditions frequently used in computer simulations
to avoid finite-size effects. In fact, even for large particle numbersN > 1000, our results
have shown that the system is still far away from the bulk limit. This is due to the massive
influence of the hard cavity wall. For periodic boundary conditions, the system is much
closer to the bulk limit for such a particle number.
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